1. Let \(A \) be a matrix. Find
\[
A = \begin{bmatrix}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{bmatrix}
\]
(a). the characteristic polynomial and the minimal polynomial of \(A \). (6分)
(b). the eigenvalues and eigenspaces of \(A \). (6分)
(c). an invertible matrix \(P \) such that \(P^{-1}AP \) is diagonal and use it to find \(A^{10} \). (8分)

2. Let \(A \) be an \(m \times n \) real matrix, \(B \) be an \(n \times p \) real matrix.
Prove that \(\text{rank}(AB) \geq \text{rank}(A) + \text{rank}(B) - n \). (20分)

3. Let \(P \in \mathbb{R}^{n \times n} \) be nonsingular and \(A \in \mathbb{R}^{m \times n} \). Prove that the column space of \(AP \) is equal to the column space of \(A \). In particular, \(AP \) and \(A \) have the same column rank. (15分)

4. Let \(A \) and \(B \) be two \(n \times n \) matrices. Show that \((AB-I) \) is invertible if \((BA-I) \) is invertible, where \(I \) is an \(n \times n \) matrix. (15分)

5. Let \(A, B \in \mathbb{R}^{n \times n} \) be nonzero matrices. Prove that
(a). if \(A \) and \(B \) are similar, then they have the same eigenvalues. (4分)
(b). if \(A \) is diagonalizable and its eigenvalues are all \(\pm 1 \), then \(A = A^{-1} \). (4分)
(c). if \(A \) is nilpotent, i.e., \(A^k = 0 \), \(\exists k \in \mathbb{N} \), then all of its eigenvalues are equal to zero. (3分)
(d). if \(A \) is nilpotent, then \(A \) is not diagonalizable. (4分)

6. Find the value \(c \) so that the system of linear equations
\[
\begin{align*}
x + y + z &= 1 \\
x - y + z &= 2 \\
x + y - z &= c
\end{align*}
\]
has solutions in \(\mathbb{R}^3 \), and in that case, find all the solutions. (15分)