國立嘉義大學九十五學年度

光電暨固態電子研究所碩士班招生考試試題

科目:近代物理

Coulomb constant $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$; Planck's constant $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

Rest mass of electron $m_e = 9.1 \times 10^{-31}$ kg ; Rest mass of proton $m_p = 1.67 \times 10^{-27}$ kg

第一部分:計算題

- The atom of positronium consists of an electron and a positron orbiting about each other.
 (a) Find the Bohr radius of this system. (8%)
 - (b) Find the longest wavelength of the photon released in the transition to n = 1. (7%)
- 2. Consider a system of three noninteracting, identical spin 1/2 particles that are in the same spin state $\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ and confine to move in a one-dimensional infinite potential well of length *a*: V(x) = 0 for 0 < x < a and $V(x) = \infty$ for other values of *x*. Determine the energy and wave function of the ground state. (15%)
- 3. (a) Write down the quantum number for the states described in spectroscopic notation as : ${}^{2}S_{3/2}$, ${}^{5}P_{3}$, ${}^{3}D_{2}$. (8%)
 - (b) Determine these states are possible or impossible, and explain why. (7%)
- 4. (a) Considering a collision between a photon with energy and momentum (E_0, p_0) and a free stationary electron, derive the Compton equation by means of the quantum explanation and relativistic theory. (8%)
 - (b) In what region of the electromagnetic spectrum will be dominated by the Compton scattering, please specify why? (Compton wavelength = 0.0243 Å) (7%)
- 5. The optical electron configuration of an atom with two optically active electrons is 3d². The energy levels of the atom are in spin-orbit (LS) interactions.
 - (a) Find the possible values of quantum numbers s', ℓ' and j', where s', ℓ' and j' are total spin, total orbital and total atomic angular momentum quantum numbers, respectively. (8%)
 - (b) Indicate the splitting of the energy levels by a typical LS coupling configuration. You have to label quantum numbers and spectroscopic notations of the energy levels. (7%)

第二部分:解釋名詞

- 1. Wien displacement law (5%)
- 2. De Broglie wavelength (5%)
- 3. Paschen-Bach effect (5%)
- 4. Zeeman effect (5%)
- 5. Rayleigh scattering (5%)