
Introduction to Unit Testing

Jun-Ru Chang

2012/05/03

Introduction

• Software is a collection of computer

programs and related data that provide the

instructions for telling a computer what to

do and how to do it.

What is Bug

• What is Software Testing
– Software testing is an action which attempt to find

bugs either manually or through automation tools.

How to Make Bug

4

BUG

Software

specifications keep

constantly changing

Software design

is rushed or

changed

Software complexity or

poor documentation

Lack of proper

skill set in

programmers

Time pressure

How to Make Bug (cont.)

• 2, 3: Unimplemented spec

• 1, 2: Unfulfilled Needs

• 4, 7: Unexpected Behavior

• 6, 7: Undesired Behavior

Cost of Fixing Defects

Cost to fix a defect

Time detected

Requirements Architecture Construction
System

test
Post-release

Time

introduced

Requirements 1x 3x 5-10x 10x 10-100x

Architecture - 1x 10x 15x 25-100x

Construction - - 1x 10x 10-25x

source: McConnell, Steve (2004). Code Complete (2nd ed.). Microsoft Press. pp. 29. ISBN 0-7356-1967-0

6

• The earlier a defect is found, the cheaper

it is to fix it.

Software testing

• Dijkstra’s criticism, “Program testing can

be used to show the presence of bugs, but

never to show their absence”
– Only as good as the test data selected

– Compared to “expected output”

Software testing (cont.)

• Methodologies

– Black box testing

– White box testing

• Myths about testing

– Bugs are simple to remove

– A bug is caused in exactly one module

– Most bugs will be caught by the compiler

– Bug fixes always make the program better

• Imperfect debug

Specified Programmed

Test case

Software testing (cont.)

• Test case

– “Bugs lurk in corners and congregate at

boundaries…”

– The pesticide paradox

Boundary Value Analysis

• Boundary value analysis

– Input data

– Loop iteration

– Output fields

Boundary Value Analysis (cont.)

• Robustness boundary

value analysis

• Worst case boundary

value analysis

• Robust worst case

boundary value analysis

Boundary Value Analysis (cont.)

• Hierarchy

– Boundary value testing: 4n+1

– Robustness: 6n+1

– Worst case: 5n

– Robust worst case: 7n

White-box Testing

Software testing (cont.)

• Complete testing

– At the end of testing, you know there are no

remaining unknown bugs.

IMPOSSIBLE
Can’t test all inputs, timing, and paths

Software testing (cont.)

• When to stop testing?

– Cost

– Coverage strategy

Software testing (cont.)

• Type of software testing

– Unit testing

– Integration testing

– Function testing

– System testing

– Load testing

– Stress testing

– Performance testing

– Regression testing

– …etc.

Regression testing

• Seek to uncover new errors in existing

functionality after changes have been

made to a system, such as functional

enhancements, patches or configuration

changes.

Extreme Programming

Test-Driven Development (TDD)

• TDD is an evolutionary approach to

development which combines test-first

development where you write a test before

you write just enough production code to

fulfill that test and refactoring.

Unit Testing Framework

• Kent Beck

– Simple Smalltalk Testing

– JUnit

• CUnit, NUnit, C++Unit...

– XUnit

CUnit

• CUnit is a lightweight system for writing,

administering, and running unit tests in C.

It provides C programmers a basic testing

functionality with a flexible variety of user

interfaces.

CUnit (cont.)

• CU_initialize_registry(): Initialize the test
registry

• CU_add_suite(): Add suite to the test
registry

• CU_add_test(): Add tests to the suites

• CU_console_run_tests(): Run tests

• CU_cleanup_registry(): Cleanup the test
registry

• CU_ASSERT(int expression)

CUnit (cont.)

if(CUE_SUCCESS != CU_initialize_registry()){

 return CU_get_error();

}

end:

CU_cleanup_registry();

return CU_get_error();

CUnit (cont.)

CU_pSuite addSuite = CU_add_suite("add_1",
init_add_1, clean_add_1);

void testadd1(){

 CU_ASSERT(0 == add(0, 0));

 CU_ASSERT(2 == add(2, 0));

}

void testadd2(){

 CU_ASSERT(-1 == add(0, -1));

 CU_ASSERT(-2 == add(-1, -2));

}

CUnit (cont.)

if(CU_add_test(addSuite, "correct suite", testadd1) ==

NULL ||

CU_add_test(addSuite, "fail suite", testadd2) == NULL)

goto end;

CU_basic_run_tests();

CUnit (cont.)

• Compile & execution

– gcc add.c tc1.c -lcunit

– ./a.exe

• Official website:

http://cunit.sourceforge.net/index.html

CUnit (cont.)

$./a.exe

 CUnit - A unit testing framework for C - Version 2.1-2

 http://cunit.sourceforge.net/

init

Suite add_1, Test fail suite had failures:

 1. tc1.c:22 - -2 == add(-1, -2)clean

Run Summary: Type Total Ran Passed Failed Inactive

 suites 1 1 n/a 0 0

 tests 2 2 1 1 0

 asserts 4 4 3 1 n/a

Elapsed time = 0.000 seconds

execute init_add_1

execute clean_add_1

execution time

issue code

Setup

• cygwin

– http://www.cygwin.com/

– choose download

• add ftp://ftp.ntu.edu.tw/cygwin

– select package

• gcc: Devel -> gcc-core: C compiler

• cunit: Libs -> CUnit

– C:\cygwin\home\USER_NAME

Practice

• Fibonacci Sequence

– F(0) = 1, F(1) =1

– F(m) = F(m-1) + F(m-2), m>=0

Practice

• 4 Basic Arithmetic Operations

– Integer

