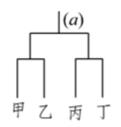
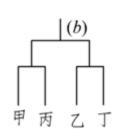
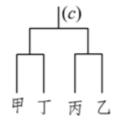

臺北市立南港高中102學年度第2次代理教師甄選數學試題卷

須將完整過程寫於答案卷,答案卷上請標明題號作答,14.15.題為多選題也須將理由寫出

- 1. 考慮滿足下列條件的所有三角形 ABC: $\overline{AB} = \overline{AC}$, $D \in \overline{AC}$ 上, $\overline{BD} \perp \overline{AC}$, \overline{AD} 與 \overline{CD} 的長度均爲整數, $\overline{BD}^2 = 87$ 。在所有這樣的三角形中, \overline{AC} 長度的最小値爲何?
- 2. 設 $a,b,c,d \in R$ 且 $d \neq 0$,若方程式 $x^4 4x^3 + ax^2 + bx + 10 = 0$ 有兩根爲c + di及c + 2di,試求a,b,c,d的值。
- 3. 四面體OABC中, $\overline{OC} \perp \overline{OA}$, $\overline{OC} \perp \overline{OB}$, $\angle AOB = 120^{\circ}$,且 $\overline{OB} = 2\overline{OA} = 2\overline{OC}$,已知M 爲 \overline{AC} 之中點,H 在 \overline{AB} 上,若 $\overline{MH} \perp \overline{AB}$,求 $\overline{\frac{AH}{AB}}$ 爲何?
- 4. 如圖所示,三角形 ABC 中, $\angle BAC$ 爲直角, $\overline{AE} \perp \overline{BC}$, $\overline{BD} = \overline{DC} = \overline{EC} = 1$,求 \overline{AC} 之長度。




- 5. 若數列 a_1 , a_2 , a_3 , \cdots , a_{2013} 中每一項皆爲 0 , 1 , -1 , 2 或 -2 ,則 $a_1 \times a_2 \times a_3 \times \cdots \times a_{2013}$ 的値有幾種可能?
- 6. 設平面上三向量 \vec{a} , \vec{b} , \vec{c} 滿足 \vec{a} . \vec{c} = \vec{b} . \vec{c} ,且 $|\vec{a}|$ = 20, $|\vec{b}|$ = 15, $|\vec{a}-\vec{b}|$ = 7 ,求 \vec{a} 在 \vec{c} 上的正射影長。
- 7. 圓內接四邊形 ABCD, \overline{AC} 爲圓之直徑, $\angle BAC = \alpha$, $\angle DAC = \beta$,若 $\overline{BD} = 10$, $\angle BAD = 45^\circ$,且 $\triangle ABC$ 的 面積爲 $\triangle ACD$ 面積的兩倍,求 $\triangle ABC$ 的面積。
- 8. 梯形 ABCD,其中 \overline{AB} 平行 \overline{CD} ,已知梯形面積爲 45,若三邊的方程式分別爲:AB 邊:x+2y-1=0,BC 邊:2x-y-7=0,AD 邊:2x+y-2=0,求第四邊 CD 所在的直線方程式。
- 9. 若4 < x < 100且 $\log 3x$ 的尾數是 $\log x$ 尾數的2倍,求x的值。
- 10. 若動點P(x, y) 到直線x = -1 的距離是到點F(1, 0) 的距離的k 倍 (k > 0),就k 討論動點P 之軌跡圖形。


交卷時請一併繳回試題

臺北市立南港高中102學年度第2次代理教師甄選數學試題卷

- 11. 袋中有8顆白球,9顆黑球,10顆紅球共27顆球。今從袋中取球,一次取一顆,取後不放回,試問白球最先取完的機率爲何?
- 12. 試求在平面 2x y + 2z = 0 上,與 L: $\frac{x-2}{7} = \frac{y+1}{-8} = \frac{z-2}{-11}$ 平行且與 L 之距離爲 $\sqrt{35}$ 的直線方程式。
- 13. 座標平面上四點,O(0,0),A(1,0),B(0,1),C(t,0) ,其中0 < t < 1 ,設D在 \overline{AB} 上,且 $\angle ACD = \angle BCO$, 當 $t = \alpha$ 時, ΔBCD 面積有最大値S ,求數對 (α, S) 。
- 15. 甲、乙、丙、丁四支籃球隊,由下列三種賽程擇一進行單淘汰賽(輸一場即出局)。

已知甲勝其他任何一隊的機率皆爲 $\frac{2}{3}$,乙勝其他任何一隊的機率皆爲 $\frac{1}{3}$,丙丁實力相當,比賽沒有和

局,下列哪些正確?

- (A)不論採何種賽程,甲獲得冠軍的機率皆爲 $\frac{4}{9}$
- (B)對丙而言,三種賽程中採用(a),其獲得冠軍的機率最高
- (C)在賽程(a)中,丙得冠軍的機率為 $\frac{6}{27}$
- (D)若用抽籤的方法決定賽程,則甲、丁能相遇進行比賽的機率超過 $\frac{3}{5}$
- 16. 圓內接四邊形 ABCD 中, $\overline{AB}=3$, $\overline{BC}=5$, $\overline{CD}=8$, \overline{DA} · $\overline{DC}=20$,點 P 爲四邊形 ABCD 內一點,點 P 至 \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 的距離分別爲 a ,b ,c ,d ,求 $9a^2+b^2+16c^2+d^2$ 的最小値。
- 17. 有一個四面體 ABCD ,其中 $\overline{AB} = \overline{CD} = 5$, $\overline{AC} = \overline{BD} = \sqrt{41}$, $\overline{AD} = \overline{BC} = \sqrt{34}$, 求此四面體的體積 。
- 18. 試推導出<u>費波那契</u>數列 $\begin{cases} a_1 = 1 \\ a_2 = 1 \\ a_{n+2} = a_{n+1} + a_n \;, n \geq 1 \end{cases}$ 的一般式 $a_n \circ (以 n 表示)$

交卷時請一併繳回試題