回首頁
*
應用數學系暨研究所
*
::: * 回首頁 *|* 嘉義大學 *|* 網站導覽 *|* 常見問答 *|* 意見信箱 *|* 雙語詞彙 *|* English *
*
**
*
*
:::
*
*
* 招生專區
*
*
*
*
*
*
*
*
* 系所園地
*
*
*
*
*
*
*
*
*
*
*
*
* 學生專區
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 下載區
*
*
* 系所評鑑專區
*
*
*
*
* 教育部計畫
*
*
*
*
*
*
*
*
* 師生互動區
*
*
*
*
* 網路資源
*
*
*
*
*
*
*
*
*
*
*
*


20215月份
            [1]
[2] [3] [4] [5] [6] [7] [8]
[9] [10] [11] [12] [13] [14] [15]
[16] [17] [18] [19] [20] [21] [22]
[23] [24] [25] [26] [27] [28] [29]
[30] [31]          

最後更新2021/04/21
*
::: * 首頁 > 中等學程課程大綱 > 微分幾何

* * < 微分幾何
*

友善列印

課程名稱:微分幾何

上課班級:應數系三年級

授課教師:

學 分 數:3

□必修  選修

先修科目:微積分、線性代數

上課時數:3

一、教學目標:%

介紹從高斯的觀點下所得到的一些重要的曲線與曲面的理論與應用。

二、教學方式及評量方式:

教學方法:!

教學方式主要是教師課堂上講解,輔以電腦秀出幾何圖形與結果。

評量方式:C

1.作業:以課本後習題為主,加上一些參考書目中重要的題目。

2.測驗:分為:隨堂測驗、期中與期末考三種。

三、教學內容及進度:&

週別

內容

1-1

複習一些微積分定理:如:隱函數,反函數定理,多變數函數微分與積分等技巧

1-2

複習線性代數性質:如:內積,外積及其幾何意義;self-adjoint 等性質。

2-1

介紹曲線理論:Definition of regular curve, arc length

2-2

介紹曲線理論:Local theory of curve parametrized by arc length

3

介紹曲線理論:local canonical form

4

介紹曲線理論:Global properties of plane curve ( four vertices theorem, isoperimetric inequality … )

5

介紹曲面的定義與例子。

6

介紹曲面上的微分與切平面的定義與實際例子

7

介紹 First fundamental form 及其幾何意義

8

介紹與 First fundamental form 相關的幾何性質 ( Area, isometry, conformal … )

9

期中考

10

介紹 曲面法向量,Gauss map 與其計算

11

介紹 Gauss map 的微分計算與例子

12

介紹 Second fundamental form, normal curvature 與其計算

13

探討 Second fundamental form 的幾何意義與 曲面上的曲率

14

探討在局部坐標系下的計算 ( first fundamental form , second fundamental form 與各種曲率… )

15

介紹 intrinsic geometry : parallel transport , geodesic

16

深入探討 geodesic 的性質

17

介紹 Gauss-Bonnet 定理與其應用

18

期末考

四、參考書

教科書:Elementary Differential Geometry, Andrew Pressley。

參考書:

1. Differential Geometry of Curves and Surfaces, do Carmo

2. Differential geometry vol 2. Spivak.。



*

到頁面頂端

*

回上一頁


國立嘉義大學 版權所有 Copyright © 2017 All Rights Reserved.

國立嘉義大學   應用數學系

地址:60004 嘉義市鹿寮里學府路300
電話:05-2717861
05-2717860

傳真:05-2717869

電子信箱math@mail.ncyu.edu.tw

*